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Topology of Networks  
in Generalized Musical Spaces 

M a r c o  B u o N G i o r N o  N a r d e l l i

Network analysis methods exploit the use of graphs or net-
works as convenient tools for modeling relations in large data 
sets. If the elements of a data set are thought of as nodes, then 
the emergence of pairwise relations between them—edges—
yields a network representation of the underlying set. Like 
social networks, biological networks and other well-known 
real-world complex networks, entire data sets of musical 
structures can be treated as a network, where a node repre-
sents each individual musical entity (pitch class set, chord, 
rhythmic progression, etc.), and a pair of nodes is connected 
by a link if the two objects exhibit a certain level of similarity 
according to a specified quantitative metric. Pairwise simi-
larity relations between nodes are thus defined through the 
introduction of a measure of “distance” in the network: a 
“metric” [1]. As in more well-known social or biological net-
works, individual nodes are connected if they share a certain 
property or characteristic (e.g. in a social network people 
are connected according to their acquaintances, collabora-
tions, common interests, etc.) Clearly, different properties 
of interest can determine whether a pair of nodes is con-
nected; therefore, different networks connecting the same 
set of nodes can be generated. 

Network representations of musical structures are not 
new: From the circle of fifths [2] to the Tonnetz [3] and recent 
works on the spiral array model of pitch space [4], the ge-
ometry of musical chords [5] and generalized voice-leading 
spaces [6,7], music theorists, musicians and composers have 
been investigating how these structures can be combined in 
explaining the relations between harmony and counterpoint, 
the foundations of Western music. The original contribu-
tion of this article is the introduction of the representation of 
musical spaces as large-scale statistical mechanics networks: 
Uncovering their topological structure is a fundamental step 
to understanding their underlying organizing principles and 
unveiling how classifications or rule-based frameworks (for 
instance, common-practice harmony) can be interpreted as 
emerging phenomena in a complex network system. 

Below, I first illustrate my approach by introducing two 
different metrics in the pitch class space: one based on the 
concept of distance between “interval vectors,” the other on 
the distance in voice-leading space. I then discuss the defini-
tion of “rules” in the musical space and introduce the idea of 
composition as emerging behavior in a complex network. A 
discussion on the extension of this method to the classifica-
tion and analysis of rhythmic progressions is presented in 
the online supplemental materials [8]. An ongoing study on 
timbre, which requires a representation not only of perceived 
fundamental frequencies but also of all component partials, 
will be the subject of a future publication. 

NeTworkS iN GeNeralized MuSical SpaceS:  
piTch claSS SeTS

Most existing approaches to the geometry of musical spaces 
focus on harmonic relations among pitches and attempt to 
define the interrelations within musical progressions as a col-
lection of transformations obtained by the application of the 
five operations of octave equivalence (O), permutation (P), 
transposition (T), inversion (I) and cardinality change (C) to 
a given pitch class set [9]. 

To build a musical network for the pitch space, I start from 
the ansatz that the totality of a musical space can be con-
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structed by an all-combinatorial approach: the super-set of 
all possible tuples of NC (NC = cardinality) integers out of 
the total number of pitches, NP, with NC = 1, . . . ,NP—mathe-
matically enumerated by the binomial coeffi  cient. Obviously, 
these are very large spaces: Th e traditional chromatic set of 
the 12-tone equal temperament system (12TET) produces 
4,096 possible choices; extending to quarter tones (24TET) 
we have 16,777,216 combinations, and from the 88 keys of a 
piano we can produce a staggering 3.1×1026 combinations, 
three orders of magnitude more than the number of units 
in one mole of any substance (Avogadro’s number). Th ese 
combinations do not allow repetitions of pitches; thus, they 
initially form a drastic geometrical abstraction of the totality 
of phase-space available for music creation. Further abstrac-
tions based on a variety of considerations can reduce the 
dimension of these spaces. In music theory one relies on the 
fi ve OPTIC transformations to defi ne classes of independent 
pitch sets [10,11] and derive classifi cations that can be used as 
analytical or compositional tools. By imposing such equiva-
lence classes, one can reduce the 12TET combinatorial space 
to a mere 238 pitch class sets [12], or the 24TET to 365,588 
sets. Th is approach can equally describe any arbitrary note 
sets or tuning or temperament systems. 

Any set of operations that abstracts the super-set of the 
musical space defi nes a “dictionary” of the set space. Th is is 
an ordered list of {label, pitch set, . . . other descriptors of the 
set} elements that is exhaustive of all allowed combinatorial 

possibilities for that space. Th e elements of the dictionary 
can then be interpreted as the “nodes” of a deterministic 
(synthetic) network by defi ning a proper metric within that 
space. Here, “label” represents the generalization of the Forte 
classifi cation scheme [13] for arbitrary NP, by sorting the 
combinatorial sets in ascending order, and eventually iden-
tifying distinct sets that share one or more identical descrip-
tors, as in Z-related sets (pitch class set [pcs] with the same 
interval vector but a diff erent prime form). 

To navigate this network, I fi rst introduce a metric based 
on the Euclidean distance (a generalized multidimensional 
Pythagorean theorem) between vectors of integers: Here I 
choose the interval vectors as nodes of the network, the ar-
ray of natural numbers that summarize the intervals present 
in a pitch class set, one of its fundamental descriptors (other 
descriptors can be defi ned along similar lines [14] but will not 
be considered here). See the online supplements for a formal 
defi nition of this distance operator.

Given the integer character of the underlying vectors, dis-
tances are “quantized”: Only discrete values are allowed. Th is 
observation suggests the introduction of a new class of opera-
tors, 𝐎({𝑛𝑖}) (see online supplements), that raise or lower by 
an integer n the ith component of such vector. Th ese opera-
tors play a major role in the network analysis that follows. 

As an illustration of this technique, Fig. 1 shows the net-
work of all the seven note scales that can be constructed in 
the 24TET super-set: 7,478 unique nodes (prime forms—

Fig. 1.	 Interval	vector-based	
network	of	all	seven	note	scales	
that	can	be	constructed	in	the	
24TET	super-set	for	distances	d	
(nearest	neighbors	only).	Nodes	
are	grouped	by	the	degree	
of	connections	(number	of	
connections	per	node)	and	coded	
according	to	their	modularity	
class	(see	text).	The	inset	shows	
the	high	degree	of	interconnection	
even	for	a	single	distance	
threshold.	(©	Marco	Buongiorno	
Nardelli)
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OPTI equivalence classes [15,16]) with 1,715 Z-related sets. I 
map this network for distances 𝑑=√2, or equivalently, by ap-
plying the 𝐎(1,1) operator to the interval vector, which raises 
or lowers two components by 1. 

Although the above classifi cation could have been ob-
tained also by other mathematical means, the novelty here 
is that having a network representation of a musical space 
allows us to apply well-established techniques of statistical 
mechanics for the analysis of large-scale networks and to 
quantitatively examine the structure of relationships between 
pitch classes. Indeed, given a network we can perform many 
statistical operations that shed light on the internal structure 
of the data. In this work I consider only two of such measures, 
degree centrality and modularity class. Th e degree of a node 
is measured by the number of edges that depart from it. It is 
a local measure of the relative “importance” of a node in the 
network. Modularity is a measure of the strength of division 
of a network into communities: High modularity (above 0.6 
in a scale from 0 to 1) corresponds to networks that have a 
clearly visible community structure [17]. In the case of the 
network in Fig. 1, I measure an average degree of 5.33 and a 
modularity of 0.865, clearly manifest in the high degree of 

separation between regions of diff erent colors. Isolating com-
munities provides a way to operate within regions of higher 
similarity, and thus in this particular case, of closer harmonic 
content. 

NeTworkS iN GeNeralized MuSical SpaceS: 
voice leadiNG

Let’s now move to the construction of networks based on 
the voice-leading distance measure (see the online supple-
ments for the defi nition of this metric). Here the nodes of 
the network represent individual pcs (chords), and their re-
lationships (edges) are defi ned by their distance in the har-
monic space. To illustrate, I start by restricting analysis to 
the space of all triads in 12TET. First consider the super-set 
of octave-equivalent normal forms (prime forms plus inver-
sions—OPT equivalence classes). In this space, a major and 
a minor chord are considered diff erent although they can 
be reduced to the same prime form. Th is is the space that 
best abstracts three-part counterpoint in common-practice 
harmony, where the 𝐎({𝑛𝑖}) operators act directly on the 
pcs as voice leading operators. Th e network restricted to 
nearest neighbors (𝐎(1)) is isomorphic to the orbifold of 

Fig. 2. 	 Networks	of	the	panchromatic	three-part	voice-leading	space	in	12TET.	(a)	d(x,y)=1	−	𝐎(1);	
(b)	d(x,y)= −	0(1,1);	(c)	d(x,y)=�3	−	0(1,1,1);	(d)	d(x,y)= −	0(1,2).	(©	Marco	Buongiorno	Nardelli)	
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the quotient space 𝕋2/𝒮3 as derived in Callender [18] and 
shown in the online supplement. This result demonstrates 
clearly the power of our approach: Our network analysis is 
confirming relations between sets when these are known, a 
proof of its reliability and, at the same time, provides a di-
rect method to explore musical spaces beyond the simplest  
abstractions.

To illustrate this argument further, let’s release the con-
straint on the transposition equivalence class and derive the 
network of the panchromatic three-parts voice-leading space 
in 12TET. The four panels in Fig. 2 show networks sliced at 
different distance thresholds (data to reproduce every net-
work are available as the online supplements). Network (a) 
is the orbifold of minimal distance neighbors. In a common 
practice harmony framework, it is the extension of the 𝕋2/
𝒮3 orbifold to every major and minor key. Network (a) dis-
plays an average node degree of 4.9 with a modularity index 
of 0.56. Network (b) is the network with edges at 𝑑 corre-
sponding to the operator 𝐎(1,1). Interestingly, for operators 
𝐎({𝑛𝑖}) of higher order, the topology of the network can be 
drastically altered. In this case, the network is split into two 
disconnected orbifolds that have as centers the augmented 
C,D and C#,Ev triads, respectively, with an average degree of 
8.8 and a modularity of 0.57. 

Similarly, in (c) the network, defined by 𝑑, is split into a 
large torus that excludes all augmented triads and their close 
relatives (degree = 5.9, modularity = 0.63); finally, in (d) the 
topology of the orbifold is recovered by 𝑑(x,y)=2 − 𝐎(2), with 
degree = 13.94 and modularity = 0.26. The structure of the 
network built under any of the 𝐎({𝑛𝑖}) operators reflects par-
ticular classes of functional properties of chord progressions. 
Table 1 summarizes some of the structures outlined in net-
works a–d. One must note that the 𝐎({𝑛𝑖}) operators contain 
and generalize the operators of the neo-Riemannian triadic 
theory: P,L=𝐎(1), R=𝐎(2), N,S=𝐎(1,1), H=𝐎(1,1,1) [19]. More 
generally, any progression in a given musical space can be 
obtained by the successive application of 𝐎({𝑛𝑖}) operators, 
thus creating the desired sequence. 

Finally, the distance operators find a direct application in 
the definition of “parsimony,” as the average of the weight 
(inverse of the distance between two chords) along the pro-

gression provides a measure of the “motion” of the sequence. 
See the online supplemental material for a more detailed 
 discussion. 

“coMpoSiTioN” aS eMerGeNT Behavior  
iN a coMplex NeTwork

All the networks in Figs 1 and 2 are “synthetic”: They are the 
result of the deterministic application of equivalence classes 
or other discrete operators to an all-combinatorial super-set. 
As such they provide a complete account of the structure and 
topology of arbitrary musical spaces but add no additional 
understanding beyond their geometrical structure. In the 
process of music- making, the composer necessarily builds 
their own harmonic and melodic sequence by making specific 
choices on the underlying network structure based on a wide 
variety of considerations: from aesthetic to functional, per-
sonal or programmatic. Moreover, the network is generally 
already sliced according to generic rules of harmonic progres-
sion, where, for instance, only selected edges are allowed (i.e. 
common practice harmony). 

Thus the deterministic fabric of the absolute geometrical 
space is shredded by probabilistic choices: The network be-
comes complex. This is the process at the core of the creation 
of any musical work: The composer, by introducing probabi-
listic choices in the creation of their own version of the net-
work, induces emergent behaviors that manifest themselves 
in the harmonic and contrapuntal framework of the piece. 

One can directly observe all these concepts in the analysis 
of a score: Figure 3 shows the network representations of 
two works of  contrasting characteristics: J.S. Bach’s chorale 
from the cantata Erfreut euch, ihr Herzen, BWV 66, and the 
sixth movement (sehr langsam) of A. Schoenberg’s Sechs 
 Kleine Klavierstücke, Op. 19. The edges here are directional, 
to indicate the pcs progression in Bach’s piece. A simple sta-
tistical analysis shows that Bach’s chorale network, Fig. 3a, 
has an average degree of 1.70 per node, and a modularity 
index of 0.46: The distribution of edges is very sparse, and 
many nodes are visited numerous times. The modularity in-
dex clearly individuates the broad tonal areas visited in the 
short piece as different shades in Fig. 3a (in color in digital 
publication): We start from A major, modulate to F# minor, 
then back to A major with a pass-through C# minor, then 
C# major and finally ending in F# major (see video, online 
supplements). Analysis of the distribution of the 𝐎({𝑛𝑖}) op-
erators (Fig. 3b) highlights the predominance of 𝐎(1,2) and 
𝐎(2), 𝐎(1), 𝐎(1,1,2) and 𝐎(1,2,2) in the voice leading space 
(see Table 1). These conclusions are further supported by 
analysis of the full corpus of the 371 Bach chorales (online 
supplements). 

In contrast, Schoenberg’s network displays a strikingly dif-
ferent topology (Fig. 3c): The edges form a loop and each 
node has many fewer connections (average degree 1.27). The 
progressions are largely chromatic, with 𝐎(1) and 𝐎(1,1,1) 
used extensively (Fig. 3d) and coexist with leaps of large dis-
tances in the voice leadings, corresponding to movements 
mostly from single pitches to large chords—an evidence of 
the broad range of cardinalities in the pcs (between 1 and 8 

TaBle 1.	 Example	of	the	functional	chord	progressions	
from	selected	distance	operators.	

operator distance example of functional  
chord progression 

O(1) 1 aug	⇒	Maj	⇒	min	⇒	dim	

O(2) 2 Maj	to	7	progression		
(i.e.	C	⇒	C7)	

O(1,2)  IV-I	progression	

O(1,1,2) �3	 V7-I	progression	

O(1,2,2) 3	 I-ii,	viio-I	and	IV-V	progression	
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versus the largely triadic harmony of Bach’s chorale). Clearly, 
new relations that replace the framework of classical har-
mony emerge from this network. However, a modularity of 
0.48 demonstrates the resilience of a compositional design 
that is very classical: Th e work is still centered strongly on 
a harmonic center (the incomplete dominant seventh chord 
F#AB—Forte class 3-7) and uses the FF#GABC cluster (Forte 
class 6-Z12) as a pivot point of most progressions (see video, 
online supplements). 

coNcluSioNS

Th e analytical process outlined above is fi rst and foremost a 
methodology developed for my own compositional practice. 
It can be clearly generalized for the generation of algorith-
mically based music composition agents: Current genera-
tors for complex networks that include, among others, the 
well-known models of Erdős-Rényi (probability of edge 

creation) [20] or Barabási-Albert (probabilistic distribution 
of the number of edges to attach from a new node) [21] can 
be used for the generation of such complex networks. For 
instance, using the Barabási-Albert algorithm of preferen-
tial attachment with a probability distribution of my choice, 
I can generate a sliced network that would correspond to 
totally new harmonic progression rules and, from there, 
generate innumerable variations on similar structures. Th is 
approach provides internal coherence within the framework 
and, eventually, could lead to novel pathways for the design 
of algorithmic agents of automatic composition [22]. Th ese 
procedures are becoming essential in my artistic research. 
As an illustration, the reader can fi nd the score and the com-
positional notebook of Le Reseau de Ton Souvenir, a suite 
for solo alto recorder that uses, at its foundation, harmonic 
hierarchies and rhythmic sequences based on the complex 
network analysis outlined above.

Fig. 3.	 (a)	Voice-leading	network	of	J.S.	Bach’s	chorale	from	the	cantata	Erfreut euch, ihr Herzen,	BWV	66	(1724);	(b)	probability	distribution	of	occurrences	of	
specifi	c	distance	operators	in	the	chorale;	(c)	voice-leading	network	of	the	sixth	movement	(sehr langsam)	of	A.	Schoenberg,	Sechs Kleine Klavierstücke,	Op.	19	
(1913);	(d)	probability	distribution	of	occurrences	of	specifi	c	distance	operators	in	Schoenberg’s	piece.	A	video	animation	of	the	evolution	of	both	progressions	is	
available	in	the	online	supplements.	(©	Marco	Buongiorno	Nardelli)
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